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Abstract. This paper is concerned with a Lévy noise characterized, fort ∈ [0,∞], by the
functionalGξ ([k(t)]) = exp(−b ∫∞0 |k(s)|α ds), with 0 < α 6 2. Then Ĺevy flights can be
defined through a stochastic differential equations rather than the usual Chapmann–Kolmogorov
equation. We have used this functional approach to solve a plane rotor in the presence of Lévy noise.
The linear damped stochastic process driven by Lévy noise is revisited and its non-autonomous
and non-Markovian generalizations have been solved in the context of our functional analysis.

1. Lévy noise, Ĺevy flights

Consider the stochastic process (SP)ξ(t) to be a symmetric (singular)white noise,
characterized, fort ∈ [0,∞], by the functional

Gξ([k(t)]) ≡
〈
exp i

∫ ∞
0
ξ(t)k(t) dt

〉
= exp

(
−b

∫ ∞
0
|k(s)|α ds

)
0< α 6 2 b > 0. (1.1)

The notationGξ([k(t)])emphasizes thatGdepends on the whole test functionk(t), and not just
on the value it takes at one particular timetj . The convergence of the integral is accomplished
because the real functionsk(t) may be restricted to those that vanish for sufficiently larget .
Forα = 2 this functional gives the well known (singular)Gaussian white-noise[1].

Proposition. Non-autonomous Ĺevy flights [2] can alternatively be interpreted as the SPX(t)
defined from the stochastic differential equation (SDE):

d

dt
X(t) = C1(t) + γ2(t)ξ(t) X ∈ (−∞,∞) (1.2)

when the noiseξ(t) is characterized by the functional (1.1) andC1(t), γ2(t) are sure (non-
random) functions of time.

Proof. Using [3, proposition 3] the functional of the SPX(t) (1.2), with t ∈ [0,∞], can be
written in the general form

GX([Z(t)]) = exp

(
+ik0X0 + i

∫ ∞
0
C1(t)

∫ ∞
t

Z(s) ds dt

)
×Gξ

([
γ2(s)

∫ ∞
s

Z(s ′) ds ′
])

(1.3)
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where k0 =
∫∞

0 Z(t) dt andX0 ≡ X(0) is the sure initial condition. Then using the
functional (1.1) we get

GX([Z(t)]) = exp

(
+ik0X0 + i

∫ ∞
0
C1(t)

∫ ∞
t

Z(s) ds dt

)
× exp

(
−b

∫ ∞
0

∣∣∣∣γ2(s)

∫ ∞
s

Z(s ′) ds ′
∣∣∣∣α ds

)
. (1.4)

The functionalGX([Z(t)]) completely characterizes the SPX(t). QED

Note that for the autonomous case:C1(t) = 0,γ2(t) = 1, and introducing the test function
Z(t) = k1δ(t − t1) in (1.4), the one-time characteristic function of the SPX(t), withX0 = 0,
gives

GX(k1, t1) = exp(−b|k1|αt1) (1.5)

which is just the characteristic function presented by Cauchy [4] in 1853, and later on
investigated in detail—regarding its non-negativity—by Lévy [2] in 1925 (for excellent reviews
see [5, 6]). From expression (1.5) the stable one-time (conditional) probability distribution
P(x1, t1) follows by quadrature using Fourier inversion. Closed-form expressions exist for
a few values ofα other thanα = 2 (Wiener),α = 1 (Cauchy), and the casesα = 1

2 and
α = 2

3 (Zolotarev [7]) were revisited in the review by Montroll and Bendler [8]. There, several
important series expansions have been remarked, in particular and for largex, the power-law
distributionP(x, t) ∼ (bt)/x1+α can be shown to be valid.

In the present paper we are more interested in the advantages of the closed expression of the
functionalGX([Z(t)]), and in the statistical self-affine properties of the characteristic function
GX(k, t), rather than in the asymptotic behaviour, for largex, of its one-time distribution
P(x, t).

1.1. Non-Markovian generalization

From (1.1) and (1.2) we easily see that the SPX(t) (Lévy flights) is Markovian because the noise
ξ(t) is white. As a matter of fact, this Markovian property is the starting point in the definition
of the Lévy flights from the Chapman–Kolmogorov equation, i.e. Lévy flights give rise to the
most general Markovian and translational invariant conditional probability distributions [5].
Our alternativebasicdefinition stated in (1.1) and (1.2) allow us to generalize Lévy flights
X(t), also, in a non-Markovian framework.

First define the Ĺevycorrelated noiseby the functional

Gξ([k(t)]) = exp

(
−
∫ ∞

0

∫ ∞
0
|k(s1)|α/2|k(s2)|α/2 〈〈ξ(s1)ξ(s2)〉〉 ds1 ds2

)
0< α 6 2 (1.6)

where〈〈ξ(s1)ξ(s2)〉〉 is in general any suitable function. Hence, once again, using (1.3) and
the noiseξ(t) characterized by (1.6), the generalized (non-Markovian) Lévy flightsX(t) are
characterized by the functional

GX([Z(t)]) = exp

(
+ik0X0 + i

∫ ∞
0
C1(t)

∫ ∞
t

Z(s) ds dt

)
× exp

(
−
∫ ∞

0

∫ ∞
0

∣∣∣∣γ2(s1)

∫ ∞
s1

Z(s ′) ds ′
∣∣∣∣α/2

×
∣∣∣∣γ2(s2)

∫ ∞
s2

Z(s ′′) ds ′′
∣∣∣∣α/2 〈〈ξ(s1)ξ(s2)〉〉 ds1 ds2

)
. (1.7)
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From this functional the whole Kolmogorov hierarchy can—in principle—be calculated by
introducing then-dimensional Fourier transform

P(x1, t1; x2, t2; . . . ; xn, tn)

= 1

(2π)n

∫
· · ·
∫

dk1 · · ·dkn exp

(
−i

n∑
i=1

ki xi

)
× [GX

(
[Z(t)]

)]
Z(t)=k1δ(t−t1)+···+knδ(t−tn) . (1.8)

We remark that (1.7) is anexactresult which allows us to get the complete characterization
of the generalized non-Markovian and non-autonomous Lévy flightsX(t). For example, the
one-time conditional probability distributionP(x1, t1) is given in terms ofGX(k1, t1), which
is just the functionalGX([Z(t)]) evaluated with the test functionZ(t) = k1δ(t − t1).

1.1.1. Autonomous case.The simplest autonomous case corresponds toC1(t) = 0,
γ2(t) = 1; then from (1.7) and (1.8) we see that to know the one-time probability distribution
we first have to calculate the integral

σ(t1) ≡
∫ t1

0

∫ t1

0
〈〈ξ(s1)ξ(s2)〉〉 ds1 ds2. (1.9)

Thus the conditional distribution follows by quadrature:

P(x1, t1|X0, 0) = 1

2π

∫ π

−π
dk1 exp[ik1(X0 − x1)] exp(−|k1|ασ (t1)) . (1.10)

This Fourier transformation, as before, can only be performed for some particular values ofα.
As is well known, the notable point concerning the Lévy flights (Markovian or not) is that all
the moments of SPX(t) diverge. This fact can easily be realized from the lack of analyticity
(for α ∈ (0, 2)) about the origin,k1 = 0, of the one-time characteristic function (withX0 = 0)

GX(k1, t1) = exp(−|k1|ασ (t1)) . (1.11)

If L évy flights are non-Markovian the statistical self-affine properties ofGX(k1, t1) are lost
during the transient regime when no scaling is allowed. Only in the long-time regime and if
the correlation〈〈ξ(s1)ξ(s2)〉〉 is of the short-range class, the functionσ(t) fulfills the scaling
σ(3t)→ 3σ(t); then in this case the non-Markovian Lévy flights re-acquire, in the long-time
regime, its usual scaling (A.1). A different situation occurs when the correlation〈〈ξ(s1)ξ(s2)〉〉
is of the long-range class. For example let us assume that the correlation is characterized by
the power-law function†

〈〈ξ(t1)ξ(t2)〉〉 = 02τ
−1

(1 + |t1− t2|/τ)µ τ ∈ [0,∞) µ > 0. (1.12)

The caseµ = 0 corresponds to a ballistic-like situation. Then from (1.9) and (1.12) theσ(t)

function is given, for 06 µ 6= {1, 2}, by

1

02
σ(t) = 2t

(µ− 1)
+

2τµ−1(t + τ)2−µ

(µ− 1)(µ− 2)
− 2τ

(µ− 1)(µ− 2)
. (1.13)

Forµ = 1 we get

1

02
σ(t)

∣∣
µ=1 = 2τ + 2(t + τ)

(
log

(
1 +

t

τ

)
− 1

)
(1.14)

† A similar stationary long-range correlation was also used to study the diffusion-advection equation with a random
velocity field [9].
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and forµ = 2 reads

1

02
σ(t)

∣∣
µ=2 = 2t − 2τ log

(
1 +

t

τ

)
. (1.15)

Hence, if 06 µ 6 1 it is simple to see that due to the long-range effect of the correlated Lévy
noise (1.6), the one-time characteristic functionGX(k, t) ≡ 〈exp ikX(t)〉 does not have, even
at long times, the familiar Ĺevy’s scaling (A.1). If the noise power-law parameterµ fulfills
µ ∈ [0, 1), we see from (1.13) that a new asymptotic scaling is obtained:σ(3t)→ 32−µσ(t).
Then from (1.11), the one-time characteristic function fulfills theasymptoticlong-time scaling

GX

(
k

3(2−µ)/α ,3t
)
−→ GX(k, t) µ ∈ [0, 1) α ∈ (0, 2] t � τ (1.16)

which implies, for the non-Markovian Ĺevy flightsX(t), the asymptotic scaling

X(3t)→ 3(2−µ)/αX(t) µ ∈ [0, 1) α ∈ (0, 2] t � τ. (1.17)

Then we can conclude that a long-range correlated Lévy noise induces astrong non-
Markovian effect which changes the long-timeasymptotic scalingof the SPX(t). If µ = 1
there are logarithmic corrections. Only ifµ > 1 the familiar Ĺevy scaling (A.1) is re-obtained
(in the asymptotic long-time regime).

On the other hand, (1.17) can be used to realize that it is possible to mimic the
fractal dimensions of the (usual) Lévy flights by using a strong non-Markovian Gaussian
SP characterized by a power-law correlation function as in (1.12), see appendix A.3. Then it
follows that fort � τ andµ ∈ [0, 1) the non-Markovian Gaussian SPY(t) (A.2) shares some
fractal properties with the persistent Lévy flights, forα ∈ [1, 2), but avoids having divergent
moments. Namely, the Gaussian SPY(t) has the same fractal dimensionsDB andD as the
Lévy flights if we perform assignation (A.6). For the caseα ∈ (0, 1) we have not been able
to find a completely characterized non-Markovian SP that has the same fractal dimensions as
Lévy flights, but avoids having divergent moments.

2. Lévy fluctuations

2.1. Linear dissipative Ĺevy processes

Ourbasicdefinition, stated in (1.1) and (1.2), for the Lévy flightsX(t), allows us to solve the
interesting problem of a linear system driven by a Lévy noise. In general these types of models
can be used when a linear dissipative system is notefficientto dissipate the energy supplied
by the external noise [10].

Consider the most general non-autonomous linear SDE, characterizing the Markov SP
V(t), of the form

d

dt
V (t) = −γ1(t)V (t) + γ2(t)ξ(t) V ∈ (−∞,∞) (2.1)

whereγ1(t) > 0 andγ2(t)are sure functions of time, and the random forceξ(t)be characterized
by the Ĺevy (white) noise (1.1). Using [3, proposition 2], the functional of the non-autonomous
SPV(t) is given, fort ∈ [0,∞], by

GV ([Z(t)]) = e+iq0V0Gξ

([
γ2(t)

∫ ∞
t

Z(t ′) exp

(∫ t

t ′
γ1(s

′) ds ′
)

dt ′
])

= e+iq0V0 exp

(
−b

∫ ∞
0

∣∣∣∣γ2(s)

∫ ∞
s

Z(t ′) exp

(∫ s

t ′
γ1(s

′) ds ′
)

dt ′
∣∣∣∣α ds

)
(2.2)
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whereq0 =
∫∞

0 Z(s) exp
(− ∫ s0 γ1(t) dt

)
ds andV0 ≡ V(0) is the (sure) initial condition.

Equation (2.2) is an exact expression which—in principle—allows us to completely
characterize the SPV(t). Note that its non-Markovian generalization can also be completely
characterized†.

2.1.1. Autonomous case.In the particular autonomous case:γ1(t) = γ andγ2(t) = 1 the
functionalGV

(
[Z(t)]

)
adopts a much more simpler form which is very useful to calculate, in

a direct way, the 1− time characteristic function of the SPV(t), i.e. putting the test function
Z(t) = k1δ(t − t1) in (2.2) we obtain

GV (k1, t1) = exp

(
b

e−γαt1 − 1

γα
|k1|α + ik1e−γ t1V0

)
. (2.3)

The n-time characteristic functionGV (k1, t1; k2, t2; · · ·; kn, tn) can in principle be
calculated in a similar way, showing in this form the simplicity and elegance of our approach.
We should emphasize that the 1− time characteristic function (2.3) was first obtained by
Doob through a direct integration procedure [11]. Also Westet al calculated that one-time
characteristic function using the Baker–Campbell–Hausdorff [12] operational method. From
(2.3) the one-time conditional distributionP(V, t) is calculated as the Fourier transform of
a stable characteristic function (but not translational invariant) with respect to the variable
(V −V0e−γ t ), this fact was first observed by Doob [11]. Unfortunately, this integration can be
performed only for some special values ofα. For example, the caseα = 2 gives the Ornstein–
Uhlenbeck process, andα = 1 thedampedCauchy process; for other values ofα only a series
solution can be given [10]. The stationary probability distribution corresponds to the Fourier
transform of the one-time characteristic functionGV (k,∞), giving rise in this way to the
distribution of Ĺevy (stationary) fluctuations, i.e. a dynamical system which is able to reach
a stationary momentless distribution. This phenomenon was interpreted as the inefficiency of
the linear system in dissipating the pumping energy coming from the Lévy noise [10].

The present functional approach not only allows us to calculate the one-time distribution in
a direct way; the whole Kolmogorov hierarchy (as we presented in (1.8)) can also, in principle,
be obtained by quadrature using then-dimensional Fourier transform in the functional (2.2),
for autonomous as well as non-autonomous cases. This is a clear simplification procedure
over the Baker-Campbell-Hausdorff operational method.

2.2. The rigid rotator with Ĺevy noise

A plane Brownian rotation is a useful model to represent asphericalmolecule [13] when there
is only one relevant variable, the angleφ(t). Then the angular velocity� = dφ(t)/dt is
assumed to follow a Brownian motion where the random torque is represented by and additive
Gaussian noise and the dissipation by a given coefficientγ , i.e. d2φ/dt2 + γdφ/dt = ξ(t).
Instead of having numerous weak collisions, many magnetic systems have strong or very strong
collisions (random torque); then the Gaussian plane rotator is unable to describe the transient
or the long-time cosine relaxation of such a ‘spherical molecule’.

Using our functional approach it is very simple to see that the cosine relaxation〈cos(φ(t))〉
is exponential, at long times, provided that the random torque is represented by a short-
range Gaussian noise. Hence it is worth studying, here, the case when the random torque is
characterized by a Ĺevy noise. Now, because a rigid rotator is equivalent to the translation of
a particle on a circular track, this situation corresponds to assuming that the random torque

† In order to work out a non-Markovian generalization of the damped Lévy processV(t), consider the functional of
the noiseξ(t) given by (1.6).
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can produce short and very longangle excursions(without any characteristic length) on the
circular track. Then the evolution equation (Langevin dynamics) of a Lévy plane rotator is
defined, here, by the SDEs

d

dt
�(t) + γ�(t) = ξ(t) d

dt
φ(t) = �(t) {�,φ} ∈ (−∞,∞) (2.4)

whereξ(t) is the Ĺevy noise characterized by the functional (1.1). These SDEs can be solved,
for any noiseξ(t), by using our functional approach as follows.

First, the functionalG�

(
[k(t)]

)
of the angular velocity�, equivalent to (2.1), is given in

terms ofGξ

(
[k(t)]

)
. Hence the functional of the angleφ is equivalent to a generalized Wiener

process where, now, the noise is characterized by the functionalG�

(
[k(t)]

)
. Therefore the

general solution of the stochastic angleφ(t) is given by the functional

Gφ

(
[Z(t)]

) = eik0φ0G�

([∫ ∞
t

Z(s) ds

])
(2.5)

wherek0 =
∫∞

0 Z(s) ds andφ0 is theangleinitial condition; so using the explicit expression

G�

(
[M(t)]

) = e+iq0�0Gξ

([∫ ∞
t

eγ (t−t
′)M(t ′) dt ′

])
we get, withM(t) = ∫∞

t
Z(t ′′) dt ′′, the functional

Gφ

(
[Z(t)]

) = eik0φ0+iq0�0Gξ

([∫ ∞
t

eγ (t−t
′)
∫ ∞
t ′
Z(t ′′) dt ′′ dt ′

])
(2.6)

where

q0 =
∫ ∞

0
M(s)e−γ s ds =

∫ ∞
0

e−γ s
∫ ∞
s

Z(s ′) ds ′ ds

and�0 ≡ φ̇0 is theangular velocityinitial condition.
Second, if the noiseξ(t) appearing in (2.4) is a Ĺevy (white) noise, its functional is given

by (1.1); then from (2.6) we get (for 0< α 6 2, b > 0) the general solution

Gφ

(
[Z(t)]

) = eik0φ0+iq0�0 exp

(
−b

∫ ∞
0

∣∣∣∣∫ ∞
s

eγ (s−t
′)
∫ ∞
t ′
Z(t ′′) dt ′′ dt ′

∣∣∣∣α ds

)
. (2.7)

In general the cosine relaxation function is obtained from the cosine functional†; thus〈
cos

∫ ∞
0
φ(t)Z(t) dt

〉
= Re

[
Gφ

(
[Z(t)]

)]
. (2.8)

For the plane Ĺevy rotator, from (2.7), we see that the one-time characteristic function, of the
stochastic angleφ(t1) is

Gφ(k1, t1) = exp
(
ik1
[
φ0 + (1/γ )

(
1− e−γ t1

)
φ̇0
]− b|k1/γ |α6(t1)

)
.

ThenP(φ, t) is a momentless distribution. Nevertheless, the cosine relaxation is finite, as
expected, and is given by

〈cosφ(t1)〉 = Re
[
Gφ(k1, t1)

]∣∣
k1=1 = Re

[
Gφ

(
[Z(t)]

)]∣∣
Z(t)=δ(t−t1)

= cos
[
φ0 + (1/γ )

(
1− e−γ t1

)
φ̇0
]

exp(−b/γ α 6(t1)) (2.9)

where the function6(t) has the expression:

6(t) =
∫ t

0

∣∣eγ (s−t) − 1
∣∣α ds. (2.10)

† Note that the Gaussian (white) noise case is immediately re-obtained from (2.7) by takingα = 2.
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From (2.10) we see that at long-time,t � γ−1, the behaviour is6(t) ∼ t . Then even when
the shape of the transient regime of the cosine relaxation can beanomalous long(depending
on Lévy’s exponentα ∈ (0, 2)), in the very long-time limit the relaxation is exponential! Note
that the present functional approach also allows us to calculate the two-time cosine correlation〈
cos[φ(t1)− φ(t2)]

〉
in a direct way.

The long-range correlated Gaussian case can be work out, in a similar way, considering
that the functional of the stochastic angleφ(t) in this case is

Gφ

(
[Z(t)]

) = eik0φ0+iq0φ̇0 exp

[
−1

2

∫ ∞
0

∫ ∞
0

(∫ ∞
s1

eγ (s1−t
′)
∫ ∞
t ′
Z(t ′′) dt ′′ dt ′

)
×
(∫ ∞

s2

eγ (s2−t
′)
∫ ∞
t ′
Z(t ′′) dt ′′ dt ′

)
×〈〈ξ(s1)ξ(s2)〉〉 ds1 ds2

]
when the power-law noise correlation〈〈ξ(s1)ξ(s2)〉〉 has the form (1.12). Then, ifµ ∈ [0, 1)
it is possible to see that the cosine relaxation will not be exponential at long-times. In fact for
timest � τ the behaviour looks like

〈cosφ(t)〉 ∼ exp

(
− 202τ

(µ−1)γ−2

(1− µ)(2− µ)t
2−µ +O(t) +O(t2−µ exp(−γ t)

)
and hence in this long-time regime the cosine relaxation depends on the time scale of the
power-law correlationτ rather than on the dissipative parameterγ . The faster relaxation
occurs whenµ→ 0, i.e. in the ballistic-like limit. Ifµ = 1 there are logarithmic corrections;
only if µ > 1 will the cosine relaxation, at long time, be exponential.

3. Conclusions

Herein we summarize the main results of the paper.
(1) We have analyzed Ĺevy flights, the SPX(t), from a different point of view; i.e. first

we defined a Ĺevy noiseξ(t) and then we solved the characteristic functional of the stochastic
differential equation (1.2) driven by that Lévy noise. This corresponds of having completely
characterized Ĺevy flights in terms of its functionalGX([Z(t)]). This method also allow us to
work out non-autonomous and non-Markovian generalizations of Lévy flights.

(2) The response of a linear dissipative system driven by an external Lévy noiseξ(t)
has been revisited, i.e. the non-autonomous damped Lévy process (2.1). The functional of
this processGV ([k(t)]) =

〈
exp i

∫∞
0 V (t)k(t) dt

〉
has been given in (2.2) for arbitrary (sure)

time-dependent functionsγ1(t) > 0 andγ2(t). This fairly general method is based upon
knowing the characteristic functional of the noiseGξ([k(t)]), which in the present paper has
been assumed to be the Lévy (white) noise (1.1). The particular autonomous case:γ1(t) = γ
andγ2(t) = 1 has been explicitly worked out, and its one-time characteristic function shown
to be in agreement with previous results [10, 11]. From this one-time characteristic function
the conditional probability density, for arbitraryα, follows as series representation for large
(V − e−γ tV0).

(3) The plane rotator (2.4) in presence of a Lévy random torqueξ(t) has been solved. We
have showed that the cosine relaxation has avery long transient regime, and we have proved
that its shape depends on Lévy’s parameterα, (but in the long-time limit the relaxation is
exponential). Hence in the transient regime, the cosine relaxation can mimic a non-exponential
behaviour, as is the case in magnetic systems of nanometer size [16].
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On the other hand, the long-range Gaussian case has also been solved, showing in this
way that at long-times the cosine relaxation is non exponential: e−Ctβ with β ∈ (1, 2] and
C = constant.

(4) Some statistics self-affine signatures of Lévy flights (forα ∈ [1, 2)) have shown to be
equivalent to the ones calculated from a strong non-Markovian Gaussian SPY(t) (in the long-
time regimet � τ ). This fact has been pointed out, in the appendix, analyzing the asymptotic
scaling and the increments of a persistent non-Markovian stochastic process (NMSP)Y(t), in
order to calculate its fractal dimensionsDB andD. If the long-range noise parameter fulfills
µ ∈ [0, 1), past increments of the NMSPY(t) are correlated with future increments, so a
long-range correlated Gaussian noise induces infinitely long-run correlations in the NMSP
Y(t) as in thepersistentfBm [17].
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Appendix. Fractal dimensions

A.1. Box dimension

Let us go back to the usual Lévy flights (Markovian and autonomous), i.e. those characterized by
the functional (1.3) withC1(t) = 0,γ2(t) = 1. In this case the SPX(t) is statistical self-affine
for all times. This fact can be seen from thek, t structure of the one-time characteristic function
GX(k, t), see (1.5). From this expression, the following scaling invariance—in distribution—is
trueGX(3

−1/αk,3t) = GX(k, t), 3 > 0. Hence Ĺevy flightsX(t) fulfill the scaling

X(3t) = 31/αX(t). (A.1)

From this scaling rule thebox dimensionDB can be evaluated ‘mechanically’ for a set of
points such as the record of the SPX(t). To calculate this fractal dimension we closely follow
Feder’s arguments [18]. Let the time-span of the record beT , then we needT /3t segments
of length3t to cover the time axis. Hence from the scaling (A.1) it follows that

1X(3t) ≡ X(3t)− X(t0) = 31/α (X(t)− X(t0)) ≡ 31/α 1X(t)

thus in each segment the range of the record is of the order1X(3t) = 31/α 1X(t) and we
need a stack of31/α 1X(t)/3a boxes of height3a to cover that range. Therefore the number
of boxes to cover the set is of the order

N (3, a, t) = 31/α 1X(t)
3a

× T
3t
∼ 3(1/α)−2

which leads to the box counter fractal dimensionDB = 2− 1/α, for α ∈ (1, 2]. Note that
in this argument we have used boxes that were small with respect to both the length of the
recordT and the range of the record, thus this relation holds in high-resolution, so this is a
local fractal dimension. In the caseα→ 2 the Ĺevy SPX(t) approaches Wiener’s box counter
fractal dimensionDB → 3

2.

A.2. Divider dimension

Another fractal dimension that also can be evaluated ‘mechanically’ is thedivider dimension
along a curve to measure its length. For self-similar fractal curves such as coastlines this fractal
dimension can be estimated from the behaviour of its total lengthL ∼ δ1−D, whereδ is the
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‘length’ of the rule. The measured length, of the path in thex, t plane, with a rule of lengthδ,
placed such that it covers a time step3t gives a contribution to the length

δ =
√
(3t)2 +

(
1X(3t)

a

)2

=
√
(3t)2 +32/α

(
1X(t)
a

)2

where the last equality was written by virtue of (A.1). Here, as before,a measures the scale on
thex axis. Then, depending on the magnification in thex axis the behaviour ofδ as a function
of 3 will be different. Using a smalla, the dominant behaviour isδ ∼ 31/α. Hence the
number of segments along the time axis isT /3t ∼ 3−1 ∼ δ−α, where the last equality was
written by virtue of the smalla dominant behaviour. Therefore the total length will have the
behaviourL = (T /3t)× δ ∼ δ1−α, from which thedivider fractal dimension[14, 18] reads
D = α, forα ∈ (0.2]. This last result could also be found from the power-law asymptotic form
associated with the distribution of Lévy flights for largex. Then from this asymptotic form,
the cumulative function givesP(x > η) ∼ η−α, and from this hyperbolic random variable the
fractal dimension of the trajectoryD = α follows [15].

The advantage of calculatingDB andD from the scaling invariance of the one-time
characteristic function is because we can use this method for a very different SP So we may
wonder which could be the SPY(t) that not having divergent moments, has same of the
statistical self-affine properties of the Lévy flightsX(t), i.e. for example the fractal dimensions
DB andD. To proceed with this program we will introduce a particular non-Markovian
Gaussian SPY(t) with long-range correlations.

A.3. A strong non-Markovian Gaussian process

Let the equation of motion of a one-dimensional Brownian-like particle in a generalized
medium be

dY

dt
= ξ(t) Y ∈ (−∞,∞) (A.2)

whereξ(t) ∈ Re is a Gaussian long-range correlatednoise, so its correlation function can be
characterized by a power-law function as in (1.12). Hence it follows that the functional of the
non-Markovian stochastic process (NMSP)Y(t) is

GY ([Z(t)]) = e+ik0Y0 exp

[
−1

2

∫ ∞
0

∫ ∞
0

(∫ ∞
s1

Z(s) ds

)(∫ ∞
s2

Z(s ′) ds ′
)

× 〈〈ξ(s1)ξ(s2)〉〉 ds1 ds2

]
(A.3)

whereY0 ≡ Y(0) is the (sure) initial condition, andk0 =
∫∞

0 Z(s) ds. From (A.3) using
the test functionZ(t) = k1δ(t − t1), the one-time characteristic function readsGY (k1, t1) =
exp(−k2

1σ(t1) + ik1Y0), where the dispersionσ(t) is given, for 06 µ 6= 1, 2, in (1.13). If
06 µ 6 1 it is possible to see that due to the long-range effect of the Gaussian noiseξ(t), the
one-time characteristic functionGY (k, t) ≡ 〈exp(ikY(t))〉 does not, even at long times, have
Wiener’s scaling. If the power-law parameterµ fulfills µ ∈ [0, 1), we see from (1.13) that a
new asymptotic scaling is obtained:σ(3t) → 32−µσ(t). Then the one-time characteristic
function of NMSPY(t) fulfills the asymptoticlong-time scaling (withY0 = 0)

GY

(
k√
32−µ ,3t

)
−→ GY (k, t) µ ∈ [0, 1) t � τ (A.4)

which implies in the NMSPY(t) a super-diffusion asymptotic scaling:

Y(3t)→
√
32−µY(t) µ ∈ [0, 1) t � τ. (A.5)



6018 M O Cáceres

From theasymptoticscaling (A.5), and the scaling of Lévy flights (A.1) it follows that if we
perform the assignation†

1

α
= 1− µ

2
for α ∈ [1, 2), µ ∈ [0, 1) (A.6)

both processes will have the same fractal dimensionsDB andD. Hence we have found a
completely characterized NMSPY(t) which shares some statistical self-affine properties with
Lévy flights, for the caseα ∈ [1, 2), but which avoids having divergent moments.

Alternatively, the persistence of the NMSPY(t) can be interpreted from (A.3). It is
straightforward to calculate the correlation function of future increments [Y(t) − Y(0)] with
past increments [Y(0)− Y(−t)] (for 0 6 µ 6= {1, 2}):

C(t) ≡ 1

〈Y(t)2〉 〈[Y(0)− Y(−t)][Y(t)− Y(0)]〉

= τ + τµ−1(τ + 2t)2−µ

2(µ− 2)t − 2τ + 2τµ−1(τ + t)2−µ
. (A.7)

Therefore if 06 µ < 1, past increments are correlated with future increments, i.e. a long-
range correlated noise withµ ∈ [0, 1) induces infinitely long-run correlations in the NMSP
Y(t) like in the persistent fBm (super-diffusion [17]). In contrast, ifµ > 1 the normalized
correlation functionC(t) goes to zero in the limitt → ∞, in agreement with a Wiener-like
behaviour. It is also possible to see, using the fact the noiseξ(t) is symmetric and adopting
the initial conditionY(0) = 0, that the variance of an arbitrary increment of the NMSPY(t)
is given (for 06 µ 6= {1, 2} and assumingt1 6 t2) by〈
[Y(t2)− Y(t1)]2

〉 = 202

(µ− 1)(µ− 2)

[
(t2 − t1)(µ− 2)− τ + τµ−1(τ + t2 − t1)2−µ

]
. (A.8)

Thus, fort2 − t1 � τ and if the noise parameterµ ∈ [0, 1), we see that〈[Y(t2) − Y(t1)]2〉
increases with time as∼ (t2− t1)2−µ in agreement with the picture of a persistent fBm. If the
noise parameter isµ > 1 we re-obtain—in the asymptotic long-time regime—Wiener’s result
〈[Y(t2)− Y(t1)]2〉 ∼ |t2 − t1|.
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